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ABSTRACT 

To  raising of the calculating procedures stability on direct modelling of 

continuous media motions in dynamical processes «with sharpening» the 

method of field functions specific decomposition to frequency-wave numerical 

intervals is propounded and uncovered as a matter. It’s revealed, that under 

satisfaction of a «filter property», which usually physical inherent to this 

function, present decomposition procedure allows, in principle, truncating to the 

right along decreasing rates of a boundary conditions for partial field functions 

on discrete with the greatest frequency-wave numbers to such for initial 

discrete.. 
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1. INTRODUCTION 

 

The method described below was briefly outlined in proceedings [1] of a 

local-scale conference that could make it hardly accessible for scientific 

community. This consideration has led to a more detailed and clearly determined 

disclosure of the substance of the procedure for expansion of field functions by 

their frequency-wave spectrum (FWS), as applied to the tasks of simulation of 

considerably heterogeneous continuum dynamics.  

Describing continuum motion in conditions of intense and largely chaotic 

pulsations of field substances all across the Kolmogorov spectrum of frequency 

ωs and wave æs (vector) ϶ (ωs,  æs) numbers FWN, i.e., with their “aggravated” 

dynamics, generates problems of raising the stability of numerical 

implementations and establishing the average (or pseudo-average) values 

determining these variations of variables, which are of practical interest. The 

above issue is faced, e.g., at attempts of direct computer-based reproduction of 

turbulent and particularly intermittent laminar-turbulent streams. Such media are 
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also known to be characterized by uncertainty in ranges of averaging field 

functions by time, and in the general case, by space, as well [2], at deduction of 

Reynolds-averaged Navier-Stokes equations [3]. 

Hereinafter, we use the logical symbols 
, , , , ... , , ,     

- “so that”, 

“element of”, “and”, “or”, “norm”, “union”, “it follows”, “increase”, as well as 

[0]m – a value of the m-th order of smallness. 

 

2. BASIC PART 

 

 The approach suggested below should be regarded as a method of possible 

overcoming or, at least, attenuation of the aforesaid difficulties.  

Let the dynamics of a continuum in a finite four-dimensional 3Dt area V with 

boundary V  ( )V V V   be described with a closed system of equations  
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F     (1) 

with partial derivatives in the right side, i.e. for arguments t, xr, where xr  (r 

=1,2,3) are projections of radius vector x

 in the Cartesian reference system, 

generally to the second order, by space. In system (1) 
 
d/dt is a substantional 

operator of differentiation by time,   fk  are tensor, vector or scalar field 

functions, k
F are operators of, generally speaking, nonlinear transformations of 

functions in braces; kF  are external three-dimensional and surface force fields, 

and qk are energy (mostly, thermal) fields of effects on physical point, which 

may depend on values of fk at V , where the over-bar means enumeration. Here 

and below, a physical point is an ultimately small (in virtual macroscopic 

representation) particle of a continuous medium, which content to the hypothesis 

about "local thermodynamics quasi-equilibrium” [4]. 

 

 Write the boundary conditions in the following general form 

  (2) 

  The composition and form of conditions of (2) ensure existence, but (as 

distinct from Hadamard boundary problems set in a classically correct way [5]), 

not necessarily uniqueness of an analytical solution, let alone a numerical 

solution. This, apart from effects of rounding errors, is associated with a 

component of functions 
   o

k k,
 

f f commonly observed and assumed to be random. 

Presumably, this component increasingly manifests itself along with 

approximation of the computational mesh cells to the scale of physical point 

(superhigh numbers (ωs,  æs)) and causes certain aberration of conditions (2).  

 Manifestations of stochastic behavior of dynamic variables and taking into 

is empty set; 



account possible background noise in boundary conditions confirm an 

imperative on the result of establishing average values of field functions by an 

ensemble of computer implementations of motion under examination of 

“aggravated” continua. In a generalized sense, here, as mentioned above, we can 

see an abstract correlation with the Boltzmann-Gibbs ergodic hypothesis [6]. 

 Next, assuming that the continuum under consideration satisfies the filter 

condition, i.e., permanent decline of pulsation amplitude along with a growth of 

frequency ωs↑ and wave æs ↑ numbers, so that (ωs, æs)↑, present every function 

k  as a sum of its partial summands 
kj

determined at j↑ on an increasingly fine 

computational mesh, namely 
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where 
kj

 is the  k-th field function determined at the j-th increment of FWS, 

k is conventional rate of deviation of k  of the sum specified in the right side 

of equation (3) from k , and kc  are finite positive numbers. Enumeration of 

increments is exercised in an ascending order, e.g., by an order, of FWN. Metric 

limits of cell 3Dt of computational mesh are determined uniquely with intervals 

[(ωs, æs)j.inf, (ωs, æs)j.sup] of the relevant j-th increment of FWS. Obviously, (ωs, 

æs)j-1.sup = (ωs, æs)j.inf. 

 It is clear that the first increment, index j = 1, comprises metric parameters 

of an entire closed computational domain of continuum motion VVV    

(which is also true for other increments at j>1), but with the range of the 

smallest FWN. On convergence, with an acceptable dispersion of computational 

process, there may be established distributions of , 1k jf , which may be regarded 

as pseudo-average values of k  and practical applications of the theory that are 

(first and foremost) of interest. The last expansion increment (j = m) is 

approximation to the scale of the left boundary of applicability of the local 

thermodynamic quasi-equilibrium hypothesis. Intervals, in particular, the first 

one (j=1), as well as the total number of increments m, depend on physical 

properties of the continuum under examination, conditions of its motion, 

proximity of physical point to solid parts of the boundary of V  (if any), the 

degree of decline of pulsation amplitudes with j→ m, as well as resources of 

computer equipment in use. 

 In line with (3), match each equation of system (1) against an iterative 

(e.g., according to Gauss-Seidel method) totality of equations 
______________________________________________
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with boundary conditions 

  ,                          (5) 



additively meeting conditions of (2) in a descending order, with m growing to a 

prognostically small and therefore allowing truncation “from the right” of the 

value of rate of influence  
km



  produced by solution of the boundary problem 

with boundary condition 
 o 

km



 f  on functions 
, 1k jf .  

 In relations (4), (5): (n) is the number of the current iteration, 
  

km
с


are some 

nonnegative finite numbers, superscript * denoting mapping of each function 

, 1
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f f  and operators 0

k k



,F F on the j-th increment of FWS. Such 

transformation, e.g. for functions ki  is expressed as follows  

     (6) 
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where jV  is four-dimensional volume of the computational mesh cell uniquely 

associated with the j-th increment of FWS [(ωs,æs)j.inf, (ωs,æs)j.sup]→ jV , jW  is 

suitable weight function (m3sec)-1. 

 It would appear reasonable that the right part of equations (4), as distinct 

from initial equations (1), additionally comprises summands    
*
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 Note that mapping of ki
i j

on the j-th 3Dt computational mesh corrects 

functions 
kj

in a relatively weak way. On the contrary, with the mesh in question 

superimposed with functions ki
i j

, 
kj

would be smoothed considerably to an 

extent increasing with i↑. This is what, in essence, makes the factor of raising 

the stability of computational algorithms at computer-based simulation of 

strongly disturbed continuum dynamics, and makes possible, in principle, to 

establish the values of field functions 
, 1k k jf f   that would be average for 

( , )t x V .  

       It is also noteworthy that the above mentioned procedure, as applied to fluid 

media, actually reproduces a known property of cascaded transfer of energy 

fluctuations of turbulent fields from their macroscales to miniscales [7,8]. 

 

3. CONCLUSION  

 

 A crucial and apparently difficult matter remains open: which could be 

correlation between results of numerical implementation of the problem of 

describing strongly heterogeneous continuum dynamics complicated with 



presence, in the general case, of a low-level random field influence, according to 

algorithm of [3 – 6] and immediately based on initial statement (1, 2)? The 

above mentioned requires further thorough examination of proper mathematic 

aspects of the problem in question within a more general problem of simulation 

of bifurcating and developed supercritical motions of continua. 
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